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PREFACE

The Range Commanders Council (RCC) was originated to preserve and enhance the efficiency,
effectiveness, and economical operation of member ranges, individually and collectively, thereby
increasing the national capability for research, development, and operational testing and evaluation.
In the area of optical tracking, two sub-groups of the RCC have had a common interest.  The two
groups are the Optical Systems Group (OSG) and the Joint Range Instrumentation Accuracy
Improvement Group (JRIAIG).  The common interest in optical systems has been the overall
accuracy of such instruments.  Presently, optical systems are used for tracking a wide variety of
targets ranging from sub-munitions and un-manned vehicles to aircraft, missiles, and satellites.  In
each of these tracking situations, the accuracy of the final results is of primary importance.

The raw range, azimuth, and elevation data from optical systems contain both systematic and
random errors.  Random errors are typically estimated, using statistical methods, and may be
minimized by the use of optimal filter/smoother techniques.  Systematic errors, on the other hand,
require calibration (via satellite tracking or similar means), mathematical modeling, and mechanical
alignment to remove or reduce their effects.  The measurement and control of these errors can be very
difficult and time consuming.

Since the error models (and error terms) for optical and radar tracking systems correspond
strongly in most areas, this document was derived from RCC Document 256-93, IRIG Radar
Calibration Catalog.  Ranges which responded with calibration procedures for the error terms have
been identified along with their procedures for assessment and measurement.

JRIAIG tasked the Air Force Flight Test Center (AFFTC) to create the first optical calibration
catalog and to identify specific error models and procedures which will serve as generic starting
points for future participants in optical calibrations.  The current version of this document (Draft 1,
August 1993) reflects the comments and suggestions of AFFTC local personnel, with inputs and
comments from other ranges to be included in Draft 2.   Some sub-sections for which discussions or
derivations were not available in RCC Document 256-93, IRIG Radar Calibration Catalog, have
been updated.  A list of reference material is provided in the appendix primarily as a guide for further
reading.

This document will serve as the IRIG reference for optical tracking systems calibrations; it may be
reproduced as necessary for appropriate DOD agencies and their contractors.  Please direct questions or
comments to

JRIAIG Task (JR-3) Chairman: Editor (OSG affiliate):

Mr. William Tagliaferro Mr. James A. Garling, Jr.
Computer Sciences Corporation Computer Sciences Corporation
P.O. Box 446 P.O. Box 446
Edwards Air Force Base, CA  93523 Edwards Air Force Base, CA  93523

Telephone: (805) 277-5163 Telephone: (805) 277-5163
Facsimile: (805) 277-5497 Facsimile: (805) 277-5497
e-mail: btag@tspi.elan.af.mil e-mail: jgarling.tsr@mhs.elan.af.mil

tagliafe@tecnet1.jcte.jcs.mil
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1. INTRODUCTION

Advancements in missile and space vehicle technology have generated stringent accuracy
requirements for optical tracking systems.  Because these systems make precise measurements of
the angular direction of a test object in space, the measurements must be calibrated to a common or
accepted reference to establish the accuracy of the measurements obtained.  The Joint Range
Instrumentation Accuracy Improvement Group (JRIAIG) of the Range Commanders Council
(RCC) surveyed the range community to determine whether or not optical calibrations were being
done, and if so, what procedures were being followed and what error models were being used.  The
response to this survey showed that no certified optical calibration procedures have been developed
and that few established error models are in use.  Only a small sample of the participating ranges
were able to submit copies of the optical calibration procedures in use at their respective ranges.
The documents that were submitted contributed to the completion of this document.  Although the
specifics of the procedures may deviate from one range to another, the theory and general
techniques of the models were found to be the same.

No attempt was made to specifically address individual types of optical systems in the intial
version of the IRIG Optical Tracking Systems Calibration Catalog.  Instead, measurement
procedures are described in general terms, focusing on the nature of the measurement rather than
the details.  The document therefore does not provide a discussion of all optical error sources
identified by other IRIG or industry documents but rather addresses those major error sources for
which mathematical models exist and calibration procedures have been developed.  The document
is also intended for application to optical systems that are pedestal mounted (i.e. on Askanias,
Cinetheodolites, Kineto Tracking Mounts, etc.).  Since the error models for optical tracking
systems closely parallel those for radar systems, the initial draft of the document was derived from
RCC Document 256-93, IRIG Radar Calibration Catalog.

The IRIG Optical Tracking Systems Calibration Catalog addresses a very large number of
terms applied in known error models, accounting for most of the systematic errors contained in
Time-Space-Position-Information (TSPI) derived from optical tracking systems.  The focus is
mainly upon identifying the error terms in common use at all ranges and structuring a standard
error model to reflect these similarities.  The remaining terms either cannot be estimated and
removed, or result from random/undetermined error sources.  The goal of the error model
identified is to maintain the total contribution of uncorrected systematic errors to less than one
least-significant-bit (LSB) for the instrument in question, although certain factors may make this
impossible.  The purpose of the document as a whole is to summarize information about existing
calibration procedures in order that any range can use this document to tailor procedures to their
local conditions.  Although each range may develop different procedures, the end product should
reflect methods which are traceable to a common reference standard (i.e., this document).  It is
assumed that the user of the document will be familiar with the calibration of ground-based optical
tracking systems.  The individual error model terms are presented as errors which are subtracted
from the measured data to yield corrected data.  These error sources represent the relationship
between the true and measured data as follows:

Error = Measured - True
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When using the error model presented in this document, particular attention should be given to
the relationship between the physical meaning of the error source and the sign convention of its
correction.  Moreover, the term normal refers to azimuth and elevation values recorded when the
measured elevation is less than 90o (0o to 90o).  The term plunge (or dump) refers to those values
recorded when elevation is greater than 90o (90o to 180o).  The model ecounters difficulty at 90o

elevation since the azimuth value is undetermined at this pointing angle.

In paragraph 2, SYSTEMATIC ERROR MODEL DEFINITION, the optical error model is
defined in terms of azimuth and elevation errors.  In paragraph 3, SYSTEMATIC ERROR MODEL
DESCRIPTION, these terms are further explained with  high-level descriptions of the common
methods of measurement.  Paragraph 4, SYSTEMATIC ERROR MODEL DERIVATION, then
provides derivations for the individual error model elements.  In the concluding paragraph 5,
APPLICATION OF ERROR MODEL, a possible error coefficient collection methodology is
discussed.
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2. SYSTEMATIC ERROR MODEL DEFINITION

The phrase error model can be misleading.  The implication can be that the true position or
state of a target is known and that when the measured values are compared to the truth, errors are
found which can be modeled.

In reality, the exact location of the target is unknowable.  For practical applications, truth
standards can be any source of information that is sufficiently more accurate than the system being
calibrated.  Often an order of magnitude is used as the criterion for a data source to function as the
truth standard (i.e., the true-to-measured accuracy ratio is greater than ten).  Under these conditions,
comparison of the measured data with the truth standard yields error residuals that reflect the combined
effect of both systematic and random errors in the measurement.  The purpose of the error model is
therefore to describe known systematic errors which can be mathematically subtracted from the data.
The superposition of the systematic error terms make up the total correctable error.  This combined
term is divided among the two separate components of azimuth and elevation.

The error model definition is presented in paragraphs 2.1, Azimuth Component, and 2.2,
Elevation Component, with component variables defined in paragraph 2.3, Component Definitions.
For cross-reference purposes, each equation in the document is numbered according to the
paragraph and position within the paragraph (for example, 2.1-1 refers to the first equation in
paragraph 2.1).

2.1 Azimuth Component

The following equation presents the error terms of the azimuth component of a pointing angle
solution:

Ac = Ao (2.1-1)

- bo .....................................................................Zeroset

- b1 Ae& .................................................................Time Delay

- Ab e1 &′ ...............................................................Velocity Servo-lag ( K / 1  = b A 
 v1′ )

- b2 Ae&& ...............................................................Acceleration Servo-lag ( K / 1  = b A 
a 2 )

- b3sin (A1 + α 1) tan E2.......................................Mislevel

- b4sin (2A1 + α 2) tan E2 ....................................Mislevel Wobble

- b5R1 Ae& ............................................................Transit Time (b5 = 1 / speed of light)

- b6tan E2 .............................................................Nonorthogonality (Standards)
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- b7cos (m1Ao + φ1) ..............................................m1 Harmonic Encoder Nonlinearity

- b8cos (m2Ao + φ2) ..............................................m2 Harmonic Encoder Nonlinearity

- b9cos (m3Ao + φ3) ..............................................m3 Harmonic Encoder Nonlinearity

- b10sec E2............................................................Electrical Misalignment (Collimation)

- Asin Etan  + Acos Etan  -  tan 2222 ξηφη .......Vertical Deflection

- R

E sec  A cos
  a

est

2 2 
5 ............................................X Survey

- R

E sec  Asin 
  a

est

2 2 
6 ............................................Y Survey

2.2 Elevation Component

The following equation presents the terms of the elevation component of a pointing angle solution:

 Ec = Eo (2.2-1)

- co ......................................................................Zeroset

- c1 Ee& ................................................................Time Delay

- Ec e1 &′ .................................................................Velocity Servo-lag ( K / 1  = c E 
 v1′ )

- c2 Ee&& .................................................................Acceleration Servo-lag ( K / 1  = c E 
a 2 )

- c3cos (A1 + β 1 )..................................................Mislevel

- c4cos (2A1 + β 2 ) .............................................Mislevel Wobble

- c5Rest Ee& ............................................................Transit Time (c5 = 1 / speed of light)

- c6cos (n1Eo + θ 1 ) ..............................................n1 Harmonic Encoder Nonlinearity

- c7cos (n2Eo + θ 2 )..............................................n2 Harmonic Encoder Nonlinearity

- c8cos (n3Eo + θ 3 ).............................................n3 Harmonic Encoder Nonlinearity
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- c9cos E1 .............................................................Antenna Droop

- Acos + Asin 22 ξη ...............................................Vertical Deflection

-
R

Esin   Asin 
  a

est

2 2 
5 .................................................X Survey

-
R

Esin   A cos
  a

est

2 2 
6 .................................................Y Survey

-
R

E cos
  a

est

2 
7 ........................................................Z Survey

- ρ E ...................................................................Refraction

- ρ E′ .................................................................Residual Refraction

2.3 Component Definitions

The azimuth and elevation terms A1, A2, E1, and E2 are defined by the following equations:

  1 = A - b  - b cos (m A  + φ1 ) - b8cos (m2Ao + φ 2 ) - b9cos (m3Ao + φ 3 ) (2.3-1)

   A2 = A1 - b10 sec E2 - b6 tan E2 - {b3 sin (A1 + α1 ) - b4sin (2A1 + α 2 )} tan E2 (2.3-2)

   E1 = Eo - co - c6cos (n1Eo + θ 1 ) - c7cos (n2Eo + θ 2 ) - c8cos (n3Eo + θ 3 ) (2.3-3)

   E2 = E1 - c9cos E1 - c3cos (A1 + β 1 ) - c4cos (2A1 + β 2 ) (2.3-4)

The variables used in the above equations and in paragraphs 2.1, Azimuth Component, and
2.2, Elevation Component, are defined as follows:

Ac  =  Corrected Azimuth

Ec  =  Corrected Elevation

Rest =  Estimated Range {derived from multi-point Best Estimate of Trajectory (BET)}

Ao  =  Measured Azimuth

Ae& =  Estimated Azimuth Velocity
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Ae
&& =  Estimated Azimuth Acceleration

Eo  =  Measured Elevation

E e& =  Estimated Elevation Velocity

E e&& =  Estimated Elevation Acceleration

βα 11 , =  Mislevel Phase Angle

βα 22 , =  Mislevel Wobble Phase Angle

ηξ , =  Vertical Deflection Components

φ A =  Astronomic Latitude of optical system

ρ E =  Elevation Refraction Correction

ρ E′ =  Elevation Residual Refraction Correction

m1,m2,m3 =  Harmonics for Azimuth Nonlinearity

n1,n2,n3  =  Harmonics for Elevation Nonlinearity

φφφ 321 ,, =  Azimuth Nonlinearity Phase Angles

θθθ 321 ,, =  Elevation Nonlinearity Phase Angles

ai,bi,ci,di  =  Coefficients of Systematic Error Corrections
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3. SYSTEMATIC ERROR MODEL DESCRIPTION

The following paragraphs discuss the previous error model equations in further detail.  Where
practical, a one-to-one correspondence has been maintained between the error terms in paragraph
2, SYSTEMATIC ERROR MODEL DEFINITION, and those described in the following discussion.

This paragraph is again subdivided into the two error components azimuth and elevation.  The
individual error terms within each component are indicated with bold lowercase and contain three
further subdivisions indicated by italic lowercase.  In order that each error term may stand alone as
an individual reference item, repetition or redundancy among error term descriptions is necessary.
References for specific optical systems or further reading are noted where appropriate.  Derivations
of the terms are presented in paragraph 4, SYSTEMATIC ERROR MODEL DERIVATION.

3.1 Azimuth Component

3.1.1  Zeroset (or Static Error)

This term accounts for the constant offset of the measured value from the true value caused
primarily by misalignment of the zero point of the azimuth encoder axis.

Error Definition and Effects

Azimuth zeroset is the difference between true north and the mechanical azimuth encoder zero
position caused by the misalignment of the azimuth encoder axis.  Static error is a broader-scoped
term which attempts to encompass all constant offset errors in the azimuth data due to such factors
as operator alignment error, misorientation, and alignment flaws.  This is a bias value which alters
all of the azimuth output data by a fixed amount.

Mathematical Form

All offset error sources are combined under the following equation.  For purposes of systems
analysis, some ranges may elect to subdivide this error term into its individual error elements.

 b =A o∆ (3.1-1)

Measurement

Using the optical system to track the North Star (Polaris), the azimuth position is recorded at
known times.  This value is then compared to a computed value for the position of Polaris, and the
misalignment is deduced.  By recording these measurements in the normal and plunge position, the
need for precise boresight alignment of the optical instrument axes is eliminated.
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3.1.2 Time Delay and Velocity Servo-lag

Velocity servo-lag describes the situation in which the optical system is not pointing directly
at a dynamically moving target under track due to the pedestal's inability to sufficiently adjust for
a tracking error before the angular velocity of the target creates a new tracking error.  Time delay
indicates an actual bias in an optical tracker's timing, but the effect is identical to that of velocity
servo-lag.

Error Definition and Effects

As the optical system tracks a constant angular velocity target, the servo system responds to
the displacement error and continually re-positions the pedestal to reduce the position error.  A
target moving with constant azimuth velocity will require the pedestal to rotate at a constant
azimuth velocity to overcome the position error.  The constant error, due to the constant angular
velocity remaining between the actual target position and the pedestal position, is called a velocity
servo-lag.  Velocity servo-lag is only significant for Type 1 servo systems; this error is zero for
Type 2 systems.

Mathematical Form

The error constants, b1 and b'2, have the units of time, therefore this error coefficient will yield
the appropriate angular correction when multiplied by the azimuth angular velocity.

 A b =A e1 &∆ (3.1-2a) (Time Delay)

 A b =A e1 &′∆ (3.1-2b) (Velocity Servo-lag)

In field procedures, the velocity servo-lag measurement is commonly referred to as Kv.  The
relationship between b'1 and Kv is  b'1=1/Kv.

Measurement

Measurement of the velocity servo-lag value is optical system specific and will not be
addressed in the current version of this document.  It can be noted, however, that although the
procedure performed in its entirety is lengthy and time consuming, many steps need not be
repeated each time the velocity servo-lag constant is determined.  The system's Kv should be
checked daily;  this check takes approximately 15 minutes.  If a truth standard (i.e., visible satellite
or star with known trajectory) is available, however, the time delay (if any) may be estimated from
the slope of a plot of the azimuth residuals versus azimuth rate.

3.1.3  Acceleration Servo-lag

Acceleration servo-lag describes the situation in which the optical system is not pointing
directly at a dynamically moving target being tracked due to the pedestal's inability to sufficiently
adjust for a tracking error before the angular acceleration of the target creates a new tracking
error.
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Error Definition and Effects

As the optical system tracks a constantly accelerating target, the servo system must remain on
track by continually overcoming the constantly changing velocity of the target.  The acceleration
constant is a measure of the optical system's ability to maintain track on the accelerating target and
is related to the velocity constant.  This value will change with each servo bandwidth setting.

Mathematical Form

The acceleration servo-lag error constant, b2, has the units of time squared; therefore, this
error coefficient will yield the appropriate angular correction when multiplied by the azimuth
angular acceleration.

 A b =A e2 &&∆ (3.1-3)

In field procedures, the acceleration servo-lag measurement is commonly referred to as Ka.
The relationship between b2 and Ka is b2=1/Ka.

Measurement

Measurement of the acceleration servo-lag value is optical system specific and will not be
addressed in the current version of this document.  It can be noted, however, that although the
procedure performed in its entirety is lengthy and time consuming, many steps need not be repeated
each time the acceleration servo-lag constant is determined.  The system's Ka can be determined and
recorded on an operational basis for only the bandwidths which will be used during the operation.
The Ka recordings can be made within a 20-30 minute period.

3.1.4 Pedestal Mislevel and Bearing Wobble (Azimuth Axis Rollerpath)

These terms account for the total amount of tilt of the azimuth axis in reference to that of the
local vertical.  This error is primarily caused by mounting irregularities and thermal gradients
within the pedestal.  In most cases, bearing wobble does not exist but rather is due to improper
location of the levels.

Error Definition and Effects

Pedestal mislevel refers to the tilt of the azimuth axis from the local vertical.  Azimuth axis
rollerpath error (bearing wobble) is the result of imperfect azimuth axis bearings.  Pedestal
mislevel and azimuth axis rollerpath errors are discussed here together, because they have a similar
effect on optical system azimuth and elevation angle error and both are measured in the same
procedure.  These errors are characterized by the first three harmonics of the cosine function.  The
first harmonic represents mislevel; the remaining harmonic terms describe the azimuth axis
rollerpath error.  Of these, the second harmonic only is described in the error model.  The effect on
azimuth is a function of the tangent of the elevation angle and the sine of the azimuth angle plus a
phase bias.  The azimuth mislevel error becomes pronounced at the higher elevation angles due to
the convergence of the azimuth lines at the zenith, but it should also be noted that erroneous
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mislevel values will result from improperly installed equipment or faulty measurements.

Mathematical Form

In the mislevel and wobble equations below, b3 and b4 represent the desired coefficients of
amplitude; α1 and α2 represent phase angle.  A1 is the measured azimuth corrected for zeroset and
encoder nonlinearity. E2 is the measured elevation corrected for zeroset, encoder nonlinearity,
droop, and the elevation mislevel component.

 E  ) +A(  b = A 2113 tansin α∆ (3.1-4a) (Mislevel)

 E  ) +A(2  b = A 2214 tansin α∆ (3.1-4b) (Wobble Measurement)

Measurement

Mislevel is generally measured by mounting a level reading device (e.g. Talyvel,
inclinometer, etc.) onto the pedestal and recording readings at uniform intervals throughout a 360o

turn of the pedestal.  These readings are then fit to a sinusoidal curve to determine amplitude and
phase.  Depending upon resources, the interval may range from a maximum of 90o to a minimum
of 0o (continuous); however, generally speaking, the gross motion of the pedestal precludes
continuous measurements due to vibration.  Mislevel may also be determined by fitting a curve to
the boresight measurements of several stars throughout a 360o turn.

3.1.5 Transit Time

This term accounts for the azimuth error induced by the motion of the target as the source
image travels from the target at the finite speed of light.  This error is typically only significant for
great distances and velocities.

Error Definition and Effects

Transit time errors arise because optical wavefronts travel at a finite speed and, therefore,
cannot report the instantaneous image (hence, position) of the target.  During a mission, in the time
that it takes for the image to travel back to the optical system, the target will have moved a distance
equal to the velocity of the target times the transit time of the image.  Therefore, at the time of
completion of an optical system measurement, the target has moved to a new position and a
measurement error is present.

Mathematical Form

The transit time equation derives from the assumption that azimuth deltas and time intervals
are sufficiently small to accurately approximate azimuth rate. The estimated azimuth velocity, Ae& ,

derives from the measured azimuth value, and b5 represents the reciprocal of the speed of light.

  A R b =A eest5 &∆ (3.1-5)
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The use of the vacuum speed of light for trans-atmospheric purposes is a valid assumption,
since the atmospheric effects are considered in the refraction error term.  Correction of transit time
error can be achieved in one of two ways:  by applying the foregoing equation to the measured
data, or by changing the time tag of the data.

Measurement

Since transit time is functionally related to the range and azimuth rate values, the amount of
error will vary throughout a mission; therefore, there is no fixed transit time error which can be
measured and applied for an optical system.  Accuracy is only affected by the selection of a speed

of light standard which is accepted by the calibration community and the method by which 
.

eA  is
determined.

3.1.6 Nonorthogonality (Standards)

This term accounts for the measured azimuth error induced by the tilt of the elevation rotation
axis from orthogonality with the azimuth rotation axis.

Error Definition and Effects

The elevation axis is supported by the standards (i.e., trunions).  In an ideal 2-axis gimbal
azimuth/elevation tracking mount, the elevation axis of rotation is orthogonal (perpendicular in 3-
space) to the azimuth axis of rotation.  However, due to pedestal fabrication, assembly, and tooling
jig misalignments inherent in the manufacturing process, the standards will not support each end of
the elevation axis at the same height above the azimuth plane.  As a result,  an azimuth
measurement error will be present and increase as a function of elevation angle.  In a dynamic
situation, the optical axis will require a rotation of the azimuth platform in order to maintain track
of a target which increases in elevation but maintains constant azimuth.

Mathematical Form

Through the principles of spherical trigonometry, the nonorthogonality error equation is
derived to show that the effect on azimuth is proportional to the tangent of the elevation angle.  An
upward tilt of the right side of the elevation axis, as viewed by an observer behind the optical
system, causes a positive error in the azimuth data output.  The coefficient, b6, represents the angle
of nonorthogonality; E2 represents the measured elevation angle and assumes no zeroset, droop, or
mislevel errors.

 E  b =A 26 tan∆ (3.1-6)

This error can significantly affect the azimuth data, but it has negligible effect on elevation
angle data.
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Measurement

No provision exists for the physical correction of this error after initial assembly of the
pedestal; therefore, it is necessary to periodically measure this error in the field.  The
nonorthogonality coefficient is generally a fixed value which, once established, only requires
further measurement to determine seasonal fluctuations (due to thermal expansion) and changes
due to long-term bearing wear.

Nonorthogonality can also be stated as the amount of non-parallelism between the elevation
axis and the azimuth plane of rotation; it is with respect to this equivalent definition that the
following test actually measures nonorthogonality.  A Talyvel Electronic Level, capable of
measuring level indications to one arc-second or better, is used to establish the azimuth plane of
rotation.  A second Talyvel unit is mounted on an AA Gage ULTRADEX connected to the
pedestal between the elevation axis bearings.  A level curve is taken at 400 mil increments of
azimuth, reading both units.  One data pass is taken with the elevation of the pedestal at zero, and
the other data pass is taken with the pedestal in the plunge position.  In going from the normal to
plunge position, the elevation axis mounted level unit becomes inverted by 180o plus twice the
magnitude of the nonorthogonality error.  A change to the upright position is accomplished by an
exact 180o rotation of the ULTRADEX, leaving the two data passes biased by twice the magnitude
of the nonorthogonality.  Several data passes are taken to determine precision of the measurement.

3.1.7 Encoder Nonlinearity

A precision shaft angle encoder is a device which translates the mechanical rotation of a shaft
into an incremental electrical digital representation.  This term accounts for inaccuracies in the
azimuth data output resulting from deviations in the straight line correlation of the input shaft
rotation and the incremental output electrical digital representation due to various factors such as
environmental conditions, inherent system errors, loading, and misalignment effects.

Error Definition and Effects

The error produced is the difference between the encoder output and the actual azimuth axis
angular position resulting from misalignment in the mechanical linkage or manufacturing defects.
The error is systematic and represents a nonlinear functional change which can be represented by
an n-order harmonic series.  Experience has indicated that, for a direct drive encoder coupling,
measured nonlinearities for the first harmonic are very small and can usually be ignored.  In most
cases, the second harmonic is not related to the encoder but rather is induced by the operator during
the test setup.  The nonlinearity of the azimuth encoder causes a variable bias to be introduced into
the azimuth output data.  Although the effect would be relatively small at close range, the
magnitude of the error could become quite significant at long range.

The error due to encoder coupling misalignment has a complex relationship to the input angle.
The three components considered are:

-- Axial translation
-- Radial translation from concentricity
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-- Angle between rotational axes.

Each of these contributions to the coupling error is, in general, a function of the shaft angle
position.  These functions usually possess a periodicity equal to some sub-multiple of 360o but may
have different average values and arbitrary phase relationships with respect to the input angles.
Other error sources such as velocity, acceleration, and temperature exist but are not specifically
addressed in this discussion.  Some pedestals may employ older systems where a coarse and fine
encoder are used.  Large errors in the 16th and 32nd harmonics are commonly found in these
systems.

Mathematical Form

The nonlinearity error effect causes a varying azimuth angle output bias which follows the
cosine of the azimuth shaft angle change.  The azimuth zeroset and collimation error measurements
must be considered when encoder data is used for nonlinearity error determination purposes.

 )  +A m(   b =A 1o17 φcos∆ (3.1-7a) (m1 Harmonic)

 )  +A m(   b =A 2o28 φcos∆ (3.1-7b) (m2 Harmonic)

 )  +A m(   b =A 3o39 φcos∆ (3.1-7c) (m3 Harmonic)

In the foregoing equation, b7, b8, and b9 are the coefficients representing the amplitudes of the
harmonic error, while φ1, φ2, and φ3 represent the phase angles.  The variables m1, m2, and m3

indicate the harmonic number; while they are indicated here as representing the first three
harmonics, they may in practice represent any combination of harmonics.

Measurement

The testing of a precision angle encoder of any type should take into account all aspects of
system performance as well as the interface between the encoder and the system with which it will
be used.  Measurement of the encoder nonlinearity is dependent upon the particular type and brand
of encoding system.  In general, however, the encoder output angle increment is compared against
a precisely measured shaft angle increment through a turn of 360o in azimuth (via ULTRADEX,
autocollimator, or similar).  The recorded deviations of the encoder output from the true rotation
are then modeled with the cosine series as discussed. The deviations will represent the summation
of all contributing harmonics, therefore caution must be exercised when attempting to model the
function.

Static accuracy or resolution is a measure of the encoder's ability to correlate an infinitesimal
rotation of the shaft with the transition from one encoder quantum state to another.  Encoder
resolution is equal to the number of quantized positions per turn of the input shaft.  It contributes
an uncertainty to the system output which is a fraction of the smallest quantum, known as the Least
Significant Bit (LSB), and is equal to one-half a quantum in the worst case.  The quantum
transition state is evidenced by the 'toggling' of the LSB from one number to the next and back
again in a continuing rapid fluctuation.
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3.1.8  Optical Misalignment (Collimation)

This term accounts for the measured azimuth error induced by the misalignment of the
mechanical and optical axes.

Error Definition and Effects

The optical axis of the pedestal is intended to be coincident with the pedestal's mechanical
axis as defined by the azimuth and elevation encoders (assuming all necessary corrections).  In
practice, however, there is some misalignment error due to mechanical, optical, or electrical
effects.  Mechanical misalignment results from non-orthogonal pedestal azimuth and elevation
axes.  Optical misalignment results from a non-parallel alignment of the optical and mechanical
axes causing a constant bias if the optical axis is used to calibrate the electrical axis.  Electrical
misalignment results from an improper alignment of the positional encoders which causes an
apparent shift of the optical axis from the mechanical axis.  The misalignment can be decomposed
into two perpendicular components:  one along the elevation circle, and the other perpendicular to
the plane of the elevation circle.

Mathematical Form

Through the use of spherical trigonometry, the effect of electrical misalignment on the
azimuth measurement is shown to be functionally related to the secant of the elevation.  The
coefficient, b10, represents the actual angular separation (azimuth component) of the electrical and
mechanical axes.

 E  b =A 210 sec∆ (3.1-8)

The elevation component of electrical misalignment is constant and therefore absorbed into
the elevation zeroset coefficient.

Measurement

The azimuth error due to electrical misalignment should be determined on a pre-operational
test-by-test basis.  This error term is sensitive to mission polarization mode and received mission
frequency.  Satellite tracks are generally more desirable in determining this error, but the following
example of collimation measurement will provide quick results using only a few data points.

Most static RF axis misalignment measurement procedures consist of pointing the radar
electrically toward a fixed point in the normal position.  Normal radar orientation is when the radar
is directed toward a target with the elevation angle reading less than 90o.  After recording the
normal azimuth angle, the radar is plunged (elevation angle greater than 90o) and rotated in
azimuth until it again electrically locks onto the same point in space.  Because of the geometry of
the rotations, the amount of necessary deviation from a 180o rotation is double the amount by
which the RF axis is not perpendicular to the elevation axis (azimuth component).  If the RF axis is
perpendicular to the elevation axis, the azimuth rotation required to rotate the radar to lock on in
the plunge position will be exactly 180o.
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3.1.9  Vertical Deflection

This term accounts for the azimuth difference induced by the misalignment of the local gravity
vector from the normal vector of the ellipsoid reference model.

Error Definition and Effects

Strictly speaking, the deflection of the vertical is not an error in the pedestal measurement.
Optical system measurements must be made with respect to a coordinate system, and many systems
use the astronomic vertical as an axis in their system. Systems that have their vertical axis aligned
with the astronomic vertical make their measurements in an apparent or astronomic topocentric
system referenced to the earth's geoid; while trajectory computations are most often performed on a
mathematical ellipsoid, such as DOD WGS-84, which closely approximates the size and shape of the
geoid.  The ellipsoid is a mathematically defined regular surface with specific dimensions.  The
geoid coincides with the surface to which the oceans would conform over the entire earth if free to
adjust to the combined effect of the earth's mass attraction and the centrifugal force of the earth's
rotation.  As a result of the uneven distribution of the earth's mass, the geoidal surface is irregular.
Since the ellipsoid is a regular surface, the two will not coincide; the areas of separation between the
geoid and ellipsoid are referred to as geoid undulations, geoid heights, or geoid separations.

The geoid is a surface along which the gravity potential is everywhere equal and to which the
gravity vector is always perpendicular.  The angle between the perpendicular to the geoid (plumb
line) and the perpendicular to the ellipsoid is defined as the deflection of the vertical.  The vertical
deflection angle is usually resolved into a north-south component which is coincident with the
local meridian and equal to the difference between astronomic and geodetic latitude; and an
east-west component which is coincident with the prime vertical and proportional to the difference
between astronomical and geodetic longitude.  The north-south and east-west components of
vertical deflection are referenced by the U.S. Geological Survey as ξ and η, respectively, with a
north, south, east, or west identifier to indicate the direction in which the astronomic zenith is
deflected relative to the geodetic zenith as viewed from a point in space.  Thus the correction for
vertical deflection is really a coordinate system transformation from the astronomic topocentric to
the geodetic topocentric coordinate system.

The utility of performing this transformation is determined by processing requirements, and in
some cases will lead to degradation in the data as a result of computer round-off.  Typically, this
transformation is made because users of the TSPI want it referenced to specific earth models such
as WGS-84, or it will be combined with other instrumentation and the final trajectory estimate
referenced to a specific earth model.

Mathematical Form

The equation describing vertical deflection uses the north-south and east-west components
provided by the U.S. Geological Survey.  The following equation provides the azimuth error as a
function of azimuth and elevation; there are no coefficients to be determined.  A2 and E2 are the
adjusted azimuth and elevation angles of measurement, and φA is the astronomic latitude of the
optical system.
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 A  E  + A  E   -    = A 2222A sintancostantan ξηφη∆ (3.1-9)

Confusion with the polarity of the variables of vertical deflection generally arises from the
local sign convention.  A review of local procedures is warranted to ensure proper use of this error
term--particularly in regions of the world where vertical deflection is significantly large.

Measurement

Although measurement by each range is possible, it is generally better to use the values
provided by the Defense Mapping Agency (DMA).

3.1.10 Survey

Not available at this time

3.2 Elevation Component

3.2.1 Zeroset (or Static Error)

This term accounts for the constant offset of the measured elevation angle from true caused by
misalignment of the elevation encoder axis, optical collimation shift in the elevation plane, or both.

Error Definition and Effects

Elevation zeroset can represent two different types of constant offset.  In the first
representation, zeroset defines the mechanical offset of the encoder zero point from the true zero
point.  In the second representation, zeroset (or static error) defines the total offset error due to a
combination of 1) the mechanical offset and 2) the optical collimation offset.  The first definition is
useful for encoder alignment while the second definition is useful (and necessary) for correction of
measured data.  The effect on the measured data of both definitions is a constant bias from the true
position.

Mathematical Form

All offset error sources are combined under the following equation.

  c =E o∆ (3.2-1)

For purposes of systems analysis, some ranges may elect to subdivide this error term into its
individual error elements.  In this case, the error equation may be represented as:

     co  =  cencoder bias  +  coptical collimation bias (3.2-2)
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Measurement

In its strictest definition, elevation zeroset is a measure of the difference between the encoder
zero position and the perpendicular to the local gravity vector.  The broader definition incorporates
the difference produced by the optical axis collimation error along the elevation circle.  The total
static error is constant and is commonly determined by tracking a known truth standard (e.g. a
satellite or star of known trajectory) and regressing the error from the trajectory solution.

3.2.2  Time Delay and Velocity Servo-lag

Velocity servo-lag describes the situation in which the optical system is not pointing directly
at a dynamically moving target being tracked due to the pedestal's inability to sufficiently adjust
for a tracking error before the angular velocity of the target creates a new tracking error.  Time
delay indicates an actual bias in an optical tracker's timing, but the effect is identical to that of
velocity servo-lag.

Error Definition and Effects

As the optical system tracks a constant angular velocity target, the servo system responds to
the displacement error and continually re-positions the pedestal to reduce the position error.  A
target moving with constant elevation velocity will require the pedestal to rotate at a constant
elevation velocity to overcome the position error.  The constant error, due to the constant angular
velocity, remaining between the actual target position and the pedestal position is called a velocity
servo-lag.  Velocity servo-lag is only significant for Type 1 servo systems; this error is zero for
Type 2 systems.

Mathematical Form

The error constants, c1 and c'1, have the units of time, therefore this error coefficient will yield
the appropriate angular correction when multiplied by the elevation angular velocity.

 E c =E e1 &∆ (3.2-3a) (Time Delay)

 E c =E e1 &′∆ (3.2-3b) (Velocity Servo-lag)

In field procedures, the velocity servo-lag measurement is commonly referred to as Kv.  The
relationship between c'1 and Kv is c'1=1/Kv.

Measurement

Measurement of the velocity servo-lag value is optical system specific and will not be
addressed in the current version of this document.  It can be noted, however, that although the
procedure performed in its entirety is lengthy and time consuming, many steps need not be
repeated each time the velocity servo-lag constant is determined.  The system's Kv should be
checked daily;  this check takes approximately 15 minutes.  If a truth standard (i.e., satellite or star
of known trajectory) is available, however, the time delay (if any) may be estimated from the slope
of a plot of the elevation residuals versus elevation rate.
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3.2.3  Acceleration Servo-lag

Acceleration servo-lag describes the situation in which the optical system is not pointing
directly at a dynamically moving target under track due to the pedestal's inability to sufficiently
adjust for a tracking error before the angular acceleration of the target creates a new tracking
error.

Error Definition and Effects

As the optical system tracks a constantly accelerating target, the servo system must remain on
track by continually overcoming the constantly changing velocity of the target.  The acceleration
constant is a measure of the optical system's ability to maintain track on the accelerating target and
is related to the velocity constant.  This value will change with each servo bandwidth setting.

Mathematical Form

The acceleration servo-lag error constant, c2, has the units of time squared; therefore this error
coefficient will yield the appropriate angular correction when multiplied by the elevation angular
acceleration.

 E c =E e2 &&∆ (3.2-4)

In field procedures, the acceleration servo-lag measurement is commonly referred to as Ka.
The relationship between c2 and Ka is c2=1/Ka.

Measurement

Measurement of the acceleration servo-lag value is optical system specific and will not be
addressed in the current version of this document.  It can be noted, however, that although the
procedure performed in its entirety is lengthy and time consuming, many steps need not be
repeated each time the acceleration servo-lag constant is determined.  The system's Ka can be
determined and recorded on an operational basis for only the bandwidths which will be used during
the operation.  The Ka recordings can be made within a 20-30 minute period.

3.2.4  Pedestal Mislevel and Bearing Wobble (Azimuth Axis Rollerpath)

These terms account for the total amount of tilt of the azimuth axis in reference to the local
vertical.  This error is primarily caused by mounting irregularities and thermal gradients within
the pedestal.  In most cases, bearing wobble does not exist but rather is due to improper location of
the levels.

Error Definition and Effects

Pedestal mislevel refers to the tilt of the azimuth axis from the local vertical.  Azimuth axis
rollerpath error (bearing wobble) is the result of imperfect azimuth axis bearings.  Pedestal
mislevel and azimuth axis rollerpath errors are discussed here together, because they have a similar
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effect on optical system azimuth and elevation angle error and both are measured in the same
procedure.  These errors are characterized by the first three harmonics of the cosine function.  The
first harmonic represents mislevel; the remaining harmonic terms describe the azimuth axis
rollerpath error.  Of these, the second harmonic only is described in the error model.  Mislevel
error has a variable effect on the indicated-versus-true elevation parameter, depending upon the
azimuth position of the pedestal.  The error ranges between the peak-to-peak mislevel variation
measured by the test; however, it should be noted that erroneous mislevel values will result from
improperly installed equipment or faulty measurements.

Mathematical Form

In the mislevel and wobble equations below, c3 and c4 represent the desired coefficients of
amplitude; β1 and β2 represent phase angle.  A1 is the measured azimuth corrected for zeroset and
encoder nonlinearity.

 ) +A(  c = E 113 βcos∆ (3.2-5a) (Mislevel)

 )  +A(2  c = E 214 βcos∆ (3.2-5b) (Wobble Measurement)

Measurement

Mislevel is generally measured by mounting a level reading device (e.g. Talyvel,
inclinometer, etc.) onto the pedestal and recording readings at uniform intervals throughout a 360o

turn of the pedestal.  These readings are then fit to a sinusoidal curve to determine amplitude and
phase.  Depending upon resources, the interval may range from a maximum of 90o to a minimum
of 0o (continuous); however, generally speaking, the gross motion of the pedestal precludes
continuous measurements due to vibration.  Mislevel may also be determined by fitting a curve to
the boresight measurements of several stars throughout a 360o turn.

3.2.5  Transit Time

This term accounts for the elevation error induced by the motion of the target as the source
image travels from the target at the finite speed of light.  This error is typically only significant for
great distances and velocities.

Error Definition and Effects

Transit time errors arise because optical wavefronts travel at a finite speed and, therefore,
cannot report the instantaneous position of the target.  During a mission, in the time it takes for the
image to travel back to the optical system, the target will have moved a distance equal to the
velocity of the target times the transit time of the signal.  Therefore, at the time of completion of an
optical system measurement, the target has moved to a new position and a measurement error is
present.
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Mathematical Form

The transit time equation derives from the assumption that elevation deltas and time intervals
are sufficiently small to accurately approximate elevation rate. The estimated elevation velocity
derives from the measured elevation value, and c5 represents the reciprocal of the speed of light.

E R c =E eest5 &∆ (3.2-6)

The use of the speed of light for trans-atmospheric purposes is a valid assumption, since the
atmospheric effects are considered in the refraction error term.  Correction of transit time error can
be achieved in one of two ways:  by applying the foregoing equation to the measured data, or by
changing the time tag of the data.

Measurement

Since transit time is functionally related to the range and elevation rate values, the amount of
error will vary throughout a mission; therefore, there is no fixed transit time error which can be
measured and applied for an optical system.  Accuracy is only affected by the selection of a speed
of light standard which is accepted by the calibration community and the method by which Ee&  is
determined.

3.2.6  Encoder Nonlinearity

A precision shaft angle encoder is a device which translates the mechanical rotation of a shaft
into an incremental electrical digital representation.  This term accounts for inaccuracies in the
elevation data output resulting from deviations in the straight line correlation of the input shaft
rotation and the incremental output electrical digital representation due to various factors such as
environmental conditions, inherent system errors, loading, and misalignment effects.

Error Definition and Effects

The error produced is the difference between the encoder output and the actual elevation axis
angular position resulting from misalignment in the mechanical linkage or manufacturing defects.
The error is systematic and represents a nonlinear functional change which can be represented by
an n-order harmonic series.  Experience has indicated that, for a direct drive encoder coupling,
measured nonlinearities for the first harmonic are very small and can usually be ignored.  In most
cases, the second harmonic is not related to the encoder but rather is induced by the operator during
the test setup.  The nonlinearity of the elevation encoder causes a variable bias to be introduced
into the elevation output data.  Although the effect would be relatively small at close range, the
magnitude of the error could become quite significant at long range.

The error due to encoder coupling misalignment has a complex relationship to the input angle.
The three components considered are:

-- Axial translation
-- Radial translation from concentricity
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-- Angle between rotational axes.

Each of these contributions to the coupling error is, in general, a function of the shaft angle
position.  These functions usually possess a periodicity equal to some sub-multiple of 360o but may
have different average values and arbitrary phase relationships with respect to the input angles.
Other error sources such as velocity, acceleration, and temperature exist but are not specifically
addressed in this discussion.  Some pedestals may employ older systems where a coarse and fine
encoder are used.  Large errors in the 16th and 32nd harmonics are commonly found in these
systems.

Mathematical Form

The nonlinearity error effect causes a varying elevation angle output bias which follows the
cosine of the elevation shaft angle change.  The elevation zeroset and collimation error
measurements must be considered when encoder data is used for nonlinearity error determination
purposes.

 )  +E n(   c =E 1o16 θcos∆ (3.2-7a) (n1 Harmonic)

 )  +E n(   c =E 2o27 θcos∆ (3.2-7b) (n2 Harmonic)

 )  +E n(   c =E 3o38 θcos∆ (3.2-7c) (n3 Harmonic)

In the foregoing equation, c6, c7, and c8 are the coefficients representing the amplitudes of the
harmonic error, while θ 1 , θ 2 , and θ 3  represent the phase angles.  The variables n1, n2, and n3

indicate the harmonic number; while they are indicated here as representing the first three
harmonics, they may in practice represent any combination of harmonics.

Measurement

The testing of a precision angle encoder of any type should take into account all aspects of
system performance as well as the interface between the encoder and the system with which it will
be used.  Measurement of the encoder nonlinearity is dependent upon the particular type and brand
of encoding system.  In general, however, the encoder output angle increment is compared against
a precisely measured shaft angle increment through a turn of 180o in elevation (via ULTRADEX,
autocollimator, or similar).  The recorded deviations of the encoder output from the true rotation
are then modeled with the cosine series as discussed. The deviations will represent the summation
of all contributing harmonics, therefore caution must be exercised when attempting to model the
function.

Static accuracy or resolution is a measure of the encoder's ability to correlate an infinitesimal
rotation of the shaft with the transition from one encoder quantum state to another.  Encoder
resolution is equal to the number of quantized positions per turn of the input shaft.  It contributes
an uncertainty to the system output which is a fraction of the smallest quantum, known as the Least
Significant Bit (LSB), and is equal to one-half a quantum in the worst case.  The quantum
transition state is evidenced by the 'toggling' of the LSB from one number to the next and back
again in a continuing rapid fluctuation.
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3.2.7  Optical Droop

This term accounts for the measured elevation error induced by gravitational loading on the
various components of the instrument assembly (including pedestal trunions and arms, and optical
system).

Error Definition and Effects

Due to the large mass of a tracking pedestal, gravitational forces will act upon it in sufficient
measure to produce an elevation axis angle error that will depend upon the moment arm presented
to the gravity vector.  Intuitively, the moment arm is a maximum at 0o elevation and a minimum at
90o elevation.  The functional relationship of the error follows the cosine of the elevation angle.
The optical system components most affected by droop are the camera/lens subsystems and the
pedestal arms (upon which the camera/lens subsystem is mounted).

Note that this discussion addresses center mounted optics only.  The additional effects of side
mounted optics are to be included in future revisions of this document.

Mathematical Form

From classical mechanics, it can be shown that the functional form of the droop effect is
proportional to the cosine of the elevation angle.  The coefficient, c9, represents the maximum error
value of droop (at 0o elevation), and E1 assumes correction for zeroset and encoder nonlinearity.

 E  c =E 19 cos∆ (3.2-8)

Measurement

The system droop coefficient is generally a constant term which can be applied to real-time
data as well as post-flight data.  Measurement of droop is best achieved by modeling the functional
form in a known trajectory which spans a wide range of elevation angles.  Droop measurements
using a boresight tower are theoretically possible, but experience has shown this method to be
unacceptable for instrumentation optics (use of satelites or visible stars is recommended, although
this introduces additional error considerations).

3.2.8  Vertical Deflection

This term accounts for the azimuth difference induced by the misalignment of the local gravity
vector from the normal vector of the ellipsoid reference model.

Error Definition and Effects

Strictly speaking, the deflection of the vertical is not an error in the pedestal measurement.
Optical system measurements must be made with respect to a coordinate system, and many
systems use the astronomic vertical as an axis in their system. Systems that have their vertical axis
aligned with the astronomic vertical make their measurements in an apparent or astronomic



23

topocentric system referenced to the earth's geoid; while trajectory computations are most often
performed on a mathematical ellipsoid, such as DOD WGS-84, which closely approximates the
size and shape of the geoid.  The ellipsoid is a mathematically defined regular surface with specific
dimensions.  The geoid coincides with the surface to which the oceans would conform over the
entire earth if free to adjust to the combined effect of the earth's mass attraction and the centrifugal
force of the earth's rotation.  As a result of the uneven distribution of the earth's mass, the geoidal
surface is irregular.  Since the ellipsoid is a regular surface, the two will not coincide; the areas of
separation between the geoid and ellipsoid are referred to as geoid undulations, geoid heights, or
geoid separations.

The geoid is a surface along which the gravity potential is everywhere equal and to which the
gravity vector is always perpendicular.  The angle between the perpendicular to the geoid (plumb
line) and the perpendicular to the ellipsoid is defined as the deflection of the vertical.  The vertical
deflection angle is usually resolved into a north-south component which is coincident with the
local meridian and equal to the difference between astronomic and geodetic latitude; and an
east-west component which is coincident with the prime vertical and proportional to the difference
between astronomical and geodetic longitude.  The north-south and east-west components of
vertical deflection are referenced by the U.S. Geological Survey as ξ and η, respectively, with a
north, south, east, or west identifier to indicate the direction in which the astronomic zenith is
deflected relative to the geodetic zenith as viewed from a point in space.  Thus the correction for
vertical deflection is really a coordinate system transformation from the astronomic topocentric to
the geodetic topocentric coordinate system.

The utility of performing this transformation is determined by processing requirements, and in
some cases will lead to degradation in the data as a result of computer round-off.  Typically, this
transformation is made because users of the TSPI want it referenced to specific earth models such
as WGS-84, or it will be combined with other instrumentation and the final trajectory estimate
referenced to a specific earth model.

Mathematical Form

The equation describing vertical deflection uses the north-south and east-west components
provided by the U.S. Geological Survey.  The following equation provides the elevation error as a
function of azimuth; there are no coefficients to be determined.  A2 is the adjusted azimuth angle of
measurement.

 A   +  A    = E 22 cossin ξη∆ (3.2-9)

Confusion with the polarity of the variables of vertical deflection generally arises from the
local sign convention.  A review of local procedures is warranted to ensure proper use of this error
term--particularly in regions of the world where vertical deflection is significantly large.

Measurement

Although measurement by each range is possible, it is generally better to use the values
provided by the Defense Mapping Agency (DMA).
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3.2.9  Survey

Not available at this time

3.2.10  Refraction and Residual Refraction

This term accounts for the errors induced in the elevation measurement by an inappropriate
or inaccurate refraction model correction.

Error Definition and Effects

Elevation errors due to refraction are the result of refractive index changes causing bending of
the propagation path of electromagnetic energy.  In a typical atmosphere, the refractive gradient
will decrease smoothly with increasing height; however, anomalies will exist for various reasons
and result in an inaccurate representation of the atmospheric characteristics.

Mathematical Form

Although presented as a constant, this variable could actually represent any number of
functions designed to specifically address shortcomings in the refraction model applied to the data.
The danger of such an open-ended approach is that, depending upon the functional form this
variable takes, it may actually absorb errors attributable to other systematic error sources during a
regression analysis routine.

 ρ E =E∆ (3.2-10a) (Refraction)

 ρ E =E ′∆ (3.2-10b) (Residual Refraction)

Measurement

Refraction errors are determined through the use of sophisticated mathematical models based
on inputs from the local environment.  Residual refraction is intended to address errors associated
with inaccurate weather condition inputs to the refraction model.
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4. SYSTEMATIC ERROR MODEL DERIVATION

The following discussion provides a derivation for each of the error model terms described in
the preceding paragraph.  In this paragraph, however, the discussion does not follow a one-to-one
correspondence with those terms in preceding paragraphs.  Rather, the azimuth and elevation
components of several error terms have been combined under one discussion in cases where the
derivation proceeds from a common point or assumption (Paragraph 4.1).  The derivation of the
refraction term is complex and is left to a separate discussion (Paragraph 4.2).

Error is defined, for the purpose of this derivation, to be the difference between the
measurement (or computed) value and the true value.  The true value is, of course, unknowable;
however, for practical applications it comes from some standard that is sufficiently more accurate
than the system being calibrated.  The total error is the resultant sum of all systematic error terms.

4.1  System Errors

4.1.1  Static Errors

The static error or bias is characterized by a constant offset from the true value.  Sources of
this error can be many -- encoder zeroset, image transit delay due to range, operator alignment, etc.
As for the error model, the equations for azimuth and elevation are simply:

(4.1-1)

(4.1-2)

4.1.2  Servo-lag

There are two types of feedback control systems commonly found in tracking pedestals:

Type 1 System: Zero-displacement-error system.  A constant reference input signal will
produce a constant velocity of the controlled output.

Type 2 System: Zero-velocity-error system.  A constant reference input signal will produce
a constant acceleration of the controlled output.

The equation which relates the response or output function to the input function is

            ) (t - ) (t = ) (t 0 εψψ (4.1-3)

where

    ) (t 0ψ = output function

∆∆A = constantA

∆∆E = constantE
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      ) (tψ = input function

      ) (tε = error function

Servo-lag corrections deal with steady state error.  A Type 1 system can follow a constant
velocity input with zero velocity error, but with a constant displacement error.

The displacement error is due to a lag in the servo's ability to develop the required velocity
and is given by

     K /   = vψε ′ (4.1-4)

where   ψ '  is the constant velocity input and Kv is the servo's velocity error constant.  Note that for
a zero velocity input there is zero displacement error.

A Type 2 system can do better; it can follow a constant acceleration input with zero velocity
and acceleration errors. Under constant velocity (zero acceleration) input, it is able to zero-out the
displacement error encountered with a Type 1 system.  Under a constant, non-zero acceleration
input, however, a Type 2 system also produces a displacement error due to servo-lag.  This error is
given by

       K /   = aψε ′′ (4.1-5)

where   ψ"   is the constant acceleration input and Ka is the servo's acceleration error constant.
Note that for a constant velocity (zero acceleration) input there is zero displacement error.

Software can correct for these steady state errors by using calculated values for velocity and
acceleration and input values of Kv or Ka (actually, values for 1/Kv and 1/Ka are generally used as
input).  Errors are calculated separately for the range, azimuth, and elevation channels.

  A )  K / (1or   A )  K / (1  =A A 
a 

A 
 v

&&&∆ (4.1-6)

  E )  K / (1or   E )  K / (1  = E E 
a 

E 
 v

&&&∆ (4.1-7)

where the Kv or Ka represent the appropriate servo error constants for range, azimuth, or elevation.

4.1.3  Pedestal Mislevel

Figure 4.1-1 shows the azimuth circle in the horizontal plane and a mislevel plane.  The
platform (or pedestal) has been misaligned with respect to the horizontal.
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The following rotation will align the X1Y1Z1 system with the XYZ system:
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Then equation 4.1-8 becomes
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(4.1-12)

and

Figure 4.1-1  Mislevel Geometry
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Y+X

Z
  = E

2 2 

1-tan

ψρ cos  Z-  =  X 1∆ (4.1-13)

 ψρ sin Z-  = Y 1∆ (4.1-14)

 ψρψρ sincos  Y +  X  = Z 11∆ (4.1-15)

These errors must now be transformed into .  E and  ,A  ,R ∆∆∆  This is done by noting that:

   Z +Y + X   = R 2    2   2   (4.1-16)

   ) Y / X (   = A -1tan (4.1-17)

(4.1-18)

The first order differences are:

  0  = R∆ (4.1-19)

  Y )  Y /  A (  +  X)  X /  A (  = A ∆∂∂∆∂∂∆ (4.1-20)

  Z)   Z/  E (  +  Y)  Y /  E (  +  X)  X /  E (  = E ∆∂∂∆∂∂∆∂∂∆ (4.1-21)

Then, by substitution, we get:

 E tan )  +A  ( sin   =A φρ∆ (4.1-22)

 )  +(A  cos   = E φρ∆ (4.1-23)

where     . - /2  = ψπφ

4.1.4  Optical Misalignment (Collimation)

The optical axis and the mechanical axis can be misaligned.  There are two directions to this
misalignment:  one along the elevation circle, and the other perpendicular to the plane of the
elevation circle.  Figure 4.1-2 shows this relationship.
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From Figure 4.1-2 and the principles of spherical trigonometry, the errors are given as:

       A   
)  (E
) A(

   = ) A( M ∆≈∆
cos

tan
tan (4.1-24)

or in component form as:

  E sec A  =A M ∆ (4.1-25)

and
 E  = E  M∆ (4.1-26)

which is constant and absorbed in the elevation zeroset, E0.

4.1.5  Nonorthogonality (Standards)

The term standards is also given to this term because the elevation axis is supported by the
standards (aka. trunions).  If the standards are not the same height, the elevation axis will not be
orthogonal to the azimuth axis.  See Figure 4.1-3 for an illustration of this situation.

Figure 4.1-2  Optical Misalignment Geometry
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Figure 4.1-3.  Nonorthogonality Geometry

From Figure 4.1-3 and the principles of spherical trigonometry, the following relationships are
found to exist:

 )  (E)(   = ) (RS sintantan φ (4.1-27)

 )  (E)  S(  = ) (RS E costantan (4.1-28)

or by rearranging,

)  (E) (  = )  S( E tantantan φ (4.1-29)

Now, let

    φ   = K tan (4.1-30)

and for small angles,

       SE = tan SE .  Substituting gives

     E   K  = S E tan (4.1-31)

       E tanK    =A ∆ (4.1-32)

     0   E ≈∆ (4.1-33)

4.1.6  Encoder Nonlinearity

Encoder nonlinearity is primarily due to the construction of the encoder itself.  The encoder
measures an angle based on the encoder's mechanical axis.  When the encoder is coupled to an
azimuth or elevation shaft, perfect mechanical alignment of the mechanical axis of the shaft and
encoder is not possible.  The problem is compounded when the angle measuring device is a
multiple stage system such as a resolver.  Figure 4.1-4 shows the situation.
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From figure 4.1-4 we have

   A R  = Y and  A R  = X T T cossin (4.1-34)

     )  Y /   X (  =  A and Y + X  = R -1
T 

2 2 2   tan (4.1-35)

Although a range term appears in the above equations, this term does not imply that range
must be known to derive encoder linearity (as the range term drops out before the final solution is
obtained).  Linearizing equations 4.1-32 and 4.1-33 gives:

Y)   Y  /   A ( + X)   X  /   A (  =   A T T T ∆∂∂∆∂∂∆ (4.1-36)

           Y) R /  X ( - X) R /  Y (  = 2   2   ∆∆ (4.1-37)

      ) /R  Y(   ) R /  (X - ) R /  X (   ) R /  (Y  = ∆⋅∆⋅ (4.1-38)

Then, by substitution

 A ) R /  Y(  - A )  R /   X(  = A sincos ∆∆∆ (4.1-39)
or

 A B  + A A  = A NN cossin∆ (4.1-40)

The X-Y coordinate system can be defined as Y = X ∆∆ such that the error equations become:

 ) +(A  cos  A  =A N φ∆ (4.1-41)

 ) + (E cos  E = E N φ∆ (4.1-42)

Figure 4.1-4  Encoder Nonlinearity Geometry
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4.1.7 Optical Droop

Due to the large mass of an optical system, gravity will act upon it to produce a deflection
(droop) in elevation that will depend upon the moment arm presented to the gravity vector.
Intuitively the moment arm is maximum at 0o elevation and zero at 90o elevation.  Figure 4.1-5
shows this relationship.

The derivation of droop can be simplified by thinking of the optical system assembly as a
solid beam with the entire mass of the system assembly concentrated at a distance D from the
center of rotation of the elevation system.  It can be further assumed that no bending of the beam
occurs.  From classical mechanics, the deflection at the end of the beam at a distance x=DcosE is
given by the following equation:

    
2nA
W

  x -  =y (4.1-43)

The mass of the system is acted upon by gravity in a downward direction only to produce a
force which creates the deflection y.  W constitutes this force, n is the shear modulus, and A is the
cross-sectional area of the beam.  The negative sign indicates the deflection to be downward.

Substituting a constant, K, which is equal to -W/2nA, the equation becomes,

E  D K  =y   = E cos∆ (4.1-44)

The product KD is the droop coefficient, c9, in the error model description.

4.1.8  Vertical Deflection

Vertical deflection is a result of the fact that in geodesy the irregular shape of the earth is
approximated by a mathematical surface.  The irregular shape is known as the geoid, and
represents the gravimetric equal potential surface.  The geoid coincides with the surface to which
the ocean would conform over the entire earth if free to adjust to the combined effects of the earth's

Figure 4.1-5  Droop Geometry
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mass attraction and the centrifugal forces of the earth's rotation.  The mathematical surface is an
ellipsoid of rotation that "best fits" the shape of the geoid.  Vertical deflection results from the fact
that the normals to these two surfaces are not coincident (Figure 4.1-6).

Figure 4.1-6.  Vertical Deflection

Consider a point P near the surface of the earth (Figure 4.1-6).  From point P there may be
erected a geodetic vertical which is normal to the mathematical surface of the ellipsoid.  There may
also be erected a vertical which is normal to the irregular surface of the geoid at P.  This vertical
would be that of a plumb line.  The angular separation of these two vertical lines is called the
vertical deflection.  As can bee seen in Figure 4.1-6 these two verticals have different latitudes
and longitudes.  The vertical referenced to the geoid is called the astronomic vertical and has the
corresponding astronomic latitude and longitude.  The vertical referenced to the ellipsoid is called
the geodetic vertical and has corresponding geodetic latitude and longitude.

The deflection of the vertical at an instrument site, say point P, is defined by the deviation in
the meridian,

)  -(  = A φφξ (4.1-45)

by the deviation in longitude,

)  -(  = A λλβ (4.1-46)

and by the deviation in the prime vertical,

φβη cos   = (4.1-47)

Two rectangular coordinate systems with coincident origins both at P establish the astronomic
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and geodetic local level rectangular coordinate systems.  For convention, let X be positive east, Y
be positive north, and Z be the particular vertical in question.  Then the transformation from one
system to the other system is accomplished by the three axis rotation:
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(4.1-48)

where the row subscripted with a 1 contains the direction cosines of the XG axis in the astronomic
system, the row subscripted with a 2 contains the direction cosines of the YG axis in the astronomic
system, and the row subscripted with a 3 contains the direction cosines of the ZG axis in the
astronomic system.  Using the exact definitions of these direction cosines, a rotation matrix can be
defined as:

(4.1-49)
  

The following relations are exact transformations between astronomic system and geodetic
system for Equation 4.1.49:
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(4.1-50)

and
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(4.1-51)

The typical TSPI coordinates, (R)ange, (A)zimuth, and (E)levation are related to the Cartesian
coordinates X, Y, and Z as follows:

X = R cos(E) sin(A) (4.1-52)
Y = R cos(E) cos(A) (4.1-53)
Z = R sin(E) (4.1-54)

and

    Z  + Y  + X     = R 2 2 2 (4.1-55)
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Y
X

     = A 1-tan (4.1-56)

Y  + X  

Z
     = E

2 2 

1-tan (4.1-57)

The steps in transforming TSPI in one system to another system involve first transforming
range, azimuth, and elevation to X, Y, and Z; making the appropriate rotation; and then
transforming the rotated X, Y, and Z back to range, azimuth, and elevation.

By making small angle assumptions, a first order approximation for the rotation matrix would be:
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(4.1-58)

whereφ  is either the astronomic or geodetic latitude without further impairment of accuracy.
Having made these assumptions, the vertical deflection is given by:

Asin Etan  +cosA   tanE - tan    = A   - A   =A GA ξηφη∆ (4.1-59)

 Acos   +A sin    = E   - E   = E GA ξη∆ (4.1-60)

4.2  Atmospheric Errors

4.2.1 Refraction Technical Description

Due to the many refractive layers of atmosphere through which a wave front must travel, the
refraction problem is complex.  The refraction routines discussed below were developed for the
Eastern Test Range by Gerald Trimble.  Actually, two options exist for refraction corrections:

Option 1 -REEK, a completely rigorous ray trace method which solves the differential equation of
a ray traveling through a spherically stratified atmosphere.

Option 2 -TRFR, a fast approximation to the refraction corrections provided by REEK (within
3%).  TRFR uses REEK to build a table of refraction profiles prior to processing
any data.  Since TRFR is a subset of REEK, this option will not be discussed.

4.2.1.1  REEK Refraction

The subroutine REEK is designed to compute range and elevation refraction corrections in
the troposphere and ionosphere for both pulse (group) or continuous wave (phase) radar systems.
There are no practical limitations on range or elevation values and the subroutine applies equally



36

well for optical paths.  The atmosphere characteristics may be supplied as an explicit profile of
refractivity versus height or in terms of some reference profile plus a ground index to correct for
local moisture conditions.  Two different types of data input may be presented to REEK:

Observed input of range (R) and elevation angle ) ( 0φ  implies that the instrument is looking

along that elevation angle ) ( 0φ  and the return pulse is sensed 2R/C seconds after it is

emitted.  The curved path is )    -  (R Rε  long whereε R  is the retardation refraction
correction (see Figure 4.2-1).

True input of range (R) and elevation ) ( 0φ  implies that the instrument sees an object

located on a straight line of elevation angleφ0  and range R (see figure 4.2-2).

The retardation correction is due to the speed difference between a ray travelling in a
refractive medium and a ray travelling in a vacuum.  In the troposphere, the phase refractivity
values (n) are greater than 1 and profile values, which are in terms of n-1, are positive.  Also, no
difference exists between group and phase corrections.  In the ionosphere, the phase refractivity is
less than 1 and the profile terms are negative.  Also, considerable differences exist between group
and phase retardation corrections.

Figure 4.2-1  Geometry of Observed Input

Figure 4.2-2  Geometry of True Input
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4.2.1.2  Differential Equation of a  Ray (Spherically Stratified Case)

The velocity of an electromagnetic wave in a refractive medium is:

 
n
C

  = 
dt
ds

  = V (4.2-1)

where
 s =  distance along the path
C =  wave propagation speed in a vacuum
 N =  phase refractivity

The components of Equation 4.2.1 expressed in a two-dimensional polar coordinate
system are (see Figure 4.2-3):

             ) h + R(
   

n

C
  = 

dt

 d

e

φθ cos
⋅ (4.2-2)

          φsin    
n
C

  = 
dt
dh

⋅ (4.2-3)

where
           θ = geocentric angle from site
          h = height above the earth
        φ = angular direction of the ray relative to local horizontal

     Re = radius of earth (assumed spherical)

Figure 4.2-3  Definition of Terms
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Rearranging Equation 4.2.1 to

 ds  
C
n

  = dt ,

Equations 4.2.2 and 4.2.3 become

           ) h  + R(
   = 

ds

 d

e

φθ cos
(4.2-4)

φsin  = 
ds
dh

(4.2-5)

A vector K  which describes the three dimensional ray path curvature in a refractive
medium is:

 n)  x Î (  
n

1
   =  K T ∇ (4.2-6)

where

 I Tˆ = ray tangent unit vector

       ∇n = refractivity gradient
            n = local refractivity scalar

The initial three dimensional ray tangent vector, assuming for convenience that it lies in the
(θ, R) plane, is:

    (0)  Î  +  ) 
ds

dR
  (  Î  + ) 

ds

d
  (R  Î  = I aR

θ
θ (4.2-7)

Substituting Equations 4.2.4 and 4.2.5 into 4.2.7, and noting that

ds
dh

  = 
ds
dR

gives:
(0)  I + )(  I + )(  I   =  I aRT ˆsinˆcosˆˆ φφθ (4.2-8)
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where

I aˆ  =  unit vector normal to R  and I Tˆ

I Rˆ  =  unit vector along R

I  ˆ θ  =  unit vector normal to I aˆ  and I Rˆ

R   =  position vector from earth center

Based on the assumption of a spherically stratified atmosphere, the refractivity gradient is:

(0)  I  +  
R 

n 
   I  + (0)  I  = n aR ˆˆˆ 








∂
∂

∇ θ (4.2-9)

or since
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  = 
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∂
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∂
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Equation 4.2.9 becomes

(0)  I  +  
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n 
   I  + (0)  I  = n aR ˆˆˆ 








∂
∂

∇ θ (4.2-10)

Combining these results, Equation 4.2.6 becomes:

 















∂
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n 
 cos   Î  + (0) Î  + (0) Î   

n

1
  =  K aR φθ (4.2-11)

which implies that the ray path remains in the )  R  , ( θ  plane, and hence the a component remains
zero length.

Ifδ  is the path angle in the )  R  , ( θ  plane, referenced to the initial horizontal, then /dsdδ
defines the signed curvature magnitude,

  dh

dn
    

n

1
  = |  K|  = 

ds

d
φ

δ
cos± (4.2-12)

It follows that for Figure 4.2-4, the following relationships are true:

           ds

d
  + 

ds

d
  = 

ds

d θδφ

and
   θδφ  +   = 
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Figure 4.2-4.  Relationship for Bending.

The basic differential equations of the ray are 4.2.4, 4.2.5 and 4.2.12, assuming spherical
stratification of the atmosphere.

4.2.1.3  Range and Elevation Refraction Correction

An additional differential equation is derived which will accumulate only the range refraction
corrections as a ray trace solution of the previous differential equations proceeds.  This is done in
the interest of accuracy due to the large numbers associated with range.  The derivation
individually includes both the bending portion and the retardation portion of the range correction.

4.2.1.3.1  Range Bending Correction

The range bending correction ) ( Bε  is defined as the difference in the length of the actual ray

path traversed (S) and the straight line (R) connecting the end points of the ray. ε B  is expressed as
(see figure 4.2-5):

εB = S-R (4.2-13)
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Neither the length nor the direction of R are known a-priori to the ray trace.  An arbitrary
straight line )( χ  is defined and the differences in length between the ray and (χ) are accumulated.

Subsequent to the ray trace, this is corrected in order to account for the difference in direction (ψ)
between (χ) and line R.  With this in mind, the following equation will be used in place of 4.2.13:

   )   -  R (  -    -    S=  B χχε (4.2-14)

where )( χ  is assumed the component distance along the straight line defined by the initial
direction of the ray.  This choice in direction is arbitrary and picked only for convenience.

Differentiating and integrating Equation 4.2.14 with respect to distance gives:

   )   -  R (  - ds   
ds
 d

  - 1    =  
s

B χχ
ε 






∫ (4.2-15)

and since  ,)  - (   = 
ds
d

oδδχ
cos

   )   - R (  - ds]  )   - (  - 1 [    =  o

s

B χδδε cos∫ (4.2-16)

At the completion of the ray trace, the final direction angleψ  can be determined to correct for

the bias due to the arbitrary choice of the χ  direction.

Expressing )   - R ( χ   as )   - 1 ( R ψcos   and using a trigonometric identity,

Figure 4.2-5  Derivation of Bending Error
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 ψψ sincos

greater precision is maintained and Equation 4.2.16 becomes:
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∫   
2

   2    R  - ds   
2

  - 
  2    =  2 o2 

s

B
ψδδ

ε sinsin (4.2-17)

The first term in the above equation is solved during the ray trace solution of the differential
equations and the last term is a correction applied after the ray trace is complete.

4.2.1.3.2  Range Retardation Correction

The range refraction correction due to retardation )  ( Rε  is defined as the difference between
the distance traveled by the ray in a vacuum minus the distance traveled in the atmosphere.  The
equation is:

  dt  
n
C

  - C     =  
t

R 





∫ε (4.2-18)

We can change variables by noting 
n
C

  = 
dt
ds

 to yield:

  1)ds - n (    =  
s

R ∫ε (4.2-19)

4.2.1.3.3  Total Range Correction

Figure 4.2-6  Geometry for Elevation Correction
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The total range refraction correction is the sum of Equations 4.2.18 and 4.2.19:

εεε RBT  +   =  (4.2-20)

and the true range is:

εTOT  - R  =  R (4.2-21)

4.2.1.3.4  Elevation Angle Correction

Figure 4.2-6 shows the relationship which will be used to define the elevation correction.

From Figure 4.2-6, the law of cosines can be expressed as:

   R + R  = (a) R2 + R 22
22

2
S cos

Solving for cos(a), we get:

            RR2

R - R + R
  = (a)

2

2
S

2 2
2cos (4.2-22)

Again, using Figure 4.2-6, we see that

           R

  R   =  (a) S θsin
sin (4.2-23)

so that a, with the proper sign, can be computed as follows:
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tan (4.2-24)

and the true elevatio n angle φ t  is:
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tan (4.2-25)
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Then, the elevation angle correction is:

  φφ to   -   =  E∆ (4.2-26)

4.2.1.4  Solution to the Differential Equations (Ray Trace)

The equations to be solved are:

  
) h  + R(

   =  
ds

d

e

φθ cos
(4.2-27)

   φsin  = 
ds
dh

(4.2-28)

 
dh
dn

  )(  
n
1

   =  
ds
d φδ

cos (4.2-29)









2
 - 

  2  = 
ds

d o2 B δδε
sin (4.2-30)

1 - n  = 
ds

d Rε (4.2-31)

where

θδφ  +   = 

The differential equations are solved using the Runge-Kutta-Gill numerical method until the
input range (S) is satisfied or until vacuum conditions are encountered (n-1≤ 10-30) and no
additional profile exists.

4.2.2  Transit Time

Derivation Not Available At This Time
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5. APPLICATION OF ERROR MODEL

The stability and reliability of the coefficients derived using the error model described in this
document depend on several factors outside the scope of this material; however, for completeness,
some discussion is warranted at this point.  Error coefficients are classified into two separate
categories:  long-term and short-term.  Long-term coefficients change very slowly; therefore, the
frequency of measurement for these is of the order of several months.  Short-term coefficients,
however, can change very rapidly due to mechanical or climatic influences.  Measurement of these
should occur more frequently depending on the type of error.  The type of error also determines the
method of measurement.  Some error terms are best determined using electro-optical equipment,
while others are best determined with satellite or star tracks, or by some other means.  The
following table summarizes the methodology used for the optical systems at the Air Force Flight
Test Center and is provided as an example for practical optical tracking systems calibration.

EXAMPLE OF ERROR MODEL COEFFICIENT COLLECTION METHODOLOGY
Used At AFFTC For Fixed-Site Cinetheodolites

ERROR TERM PRIMARY
METHOD

SECONDARY
METHOD

FREQUENCY OF
CALIBRATION

Azimuth Terms

ZEROSET STARS TARGET BOARDS BI-WEEKLY

TIME DELAY REGRESSED IN BET N/A EVERY MISSION

MISLEVEL TARGET BOARDS STARS EVERY MISSION

WOBBLE TARGET BOARDS STARS EVERY MISSION

TRANSIT TIME PURE MATHEMATICAL N/A EVERY MISSION

NON-ORTHOGONALITY E/O CALIBRATIONS N/A ANNUAL

NON-LINEARITY E/O CALIBRATIONS N/A SEMI-ANNUAL

OPTICAL MISALIGNMENT STARS TARGET BOARDS EVERY MISSION

SURVEY RE-SURVEY N/A AS NEEDED

VERTICAL DEFLECTION SURVEY N/A AS NEEDED

ELEVATION TERMS

ZEROSET STARS TARGET BOARDS EVRERY MISSION

TIME DELAY REGRESSED IN BET N/A EVERY MISSION

MISLEVEL TARGET BOARDS STARS EVERY MISSION

WOBBLE TARGET BOARDS STARS EVERY MISSION

TRANSIT TIME PURE MATHEMATICAL N/A EVERY MISSION

NON-LINEARITY E/O CALIBRATIONS N/A SEMI-ANNUAL

OPTICAL DROOP STARS TARGET BOARDS EVERY MISSION

SURVEY RE-SURVEY N/A AS NEEDED

VERTICAL DEFLECTION SURVEY N/A AS NEEDED

REFRACTION RTREF(PMTC) REEK(ETR) EVERY MISSION
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APPENDIX A:  RELATED DOCUMENTS

RANGE REFERENCE TABLE

OLD NAME NEW NAME

EASTERN TEST RANGE 45TH SPACE WING

PACIFIC MISSILE RANGE NAVAL AIR WARFARE CENTER-WEAPONS
DIVISION

POINT MUGU NAVAL AIR WARFARE CENTER-WEAPONS
DIVISION

SAMTEC 30TH SPACE WING

WESTERN TEST RANGE 30TH SPACE WING

USAKA KWAJALEIN MISSILE RANGE

STATIC ERROR

None Available

AZIMUTH/ELEVATION ENCODER NONLINEARITY

None Available

SERVO LAG

Procedure for Field Determination of KV, KA

May 1972
Pacific Missile Range

VERTICAL DEFLECTION

DMA Technical Report Geodesy for the Layman, DMA TR 80-003
December 1983

Defense Mapping Agency

J. J. O'Connor, Methods of Trajectory Mechanics, ESMC-TR-80-45
May 1981

Eastern Space and Missile Center
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PEDESTAL MISLEVEL AND AZIMUTH ROLLERPATH ERROR

Pedestal Mislevel and Azimuth Rollerpath Error Measurement Procedure
(using Brunson Electronic Level)
February 1970

Pacific Missile Range

Pedestal Mislevel and Azimuth Bearing Wobble Error Measurement Procedure
Brunson Electronic Level Method (RADEM No. 2.2.2.1, 2.2.2.2., 2.2.2.3)
February 1970

Pacific Missile Range

TRANSIT TIME

None Available

AZIMUTH/ELEVATION AXIS NORTHOGONALITY MEASUREMENTS

None Available

DROOP

None Available

ATMOSPHERIC REFRACTION

Atmospheric Ray Tracing and Refraction Correction, Technical Publication, TP-82-01
October 1981

Pacific Missile Range

Determination of Elevation and Slant Range Errors Due to Atmospheric Refraction,
Technical Note No. 3280-6, December 1962 (Revised 1964)

Pacific Missile Range

Atmospheric Refraction Correction Program, Tech. Note. No. 3430-35-68 
December 1968

Pacific Missile Range

Altitude Error at 50 NMI Due to Refraction, For a Range of Atmospheric Profiles Observed
at Point Mugu, Project RIMCOM, Geophysics Division, Date Unknown

Pacific Missile Range

G. D. Trimble, REEK-REEK:  Spherically Stratified & Two Dimensional Profile Refraction
Corrections for Range and Elevation (Technical Memorandum 5350-70-4), ETV-70-90,
April 1970

Eastern Test Range
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OPTICAL SYSTEM ERROR MEASUREMENT

Boresight Telescope Optical Axis Nonsymmetry Error Measurement Procedure
(RADEM No. 2.3.5.1 and 2.3.5.2), December 1970

Pacific Missile Range

Boresight Telescope Optical Calibration Target Nonlevel Error Measurement Procedure
 (RADEM No. 2.3.5.3), December 1970

Pacific Missile Range

MISCELLANEOUS

Range Commanders Council Organization Policy Document
November 1990

Range Commanders Council
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